在PyTorch中搭建ResNet(残差网络)可以按照以下步骤进行:
-
导入必要的库: 首先,确保你已经安装了PyTorch。然后,导入所需的库和模块。
import torch import torch.nn as nn import torch.optim as optim
-
定义ResNet块: ResNet的核心是一个残差块(Residual Block),它包含两个或更多的卷积层,并且通过跳跃连接(skip connection)将输入直接加到输出中。
class BasicBlock(nn.Module): expansion = 1 def __init__(self, in_channels, out_channels, stride=1): super(BasicBlock, self).__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(out_channels) self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(out_channels) self.shortcut = nn.Sequential() if stride != 1 or in_channels != self.expansion * out_channels: self.shortcut = nn.Sequential( nn.Conv2d(in_channels, self.expansion * out_channels, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion * out_channels) ) def forward(self, x): out = nn.ReLU()(self.bn1(self.conv1(x))) out = self.bn2(self.conv2(out)) out += self.shortcut(x) out = nn.ReLU()(out) return out
-
定义ResNet模型: ResNet模型通常包含多个残差块,并且有一个全局平均池化层和一个全连接层。
class ResNet(nn.Module): def __init__(self, block, num_blocks, num_classes=10): super(ResNet, self).__init__() self.in_channels = 64 self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(64) self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1) self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2) self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2) self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512 * block.expansion, num_classes) def _make_layer(self, block, out_channels, num_blocks, stride): strides = [stride] + [1] * (num_blocks - 1) layers = [] for stride in strides: layers.append(block(self.in_channels, out_channels, stride)) self.in_channels = out_channels * block.expansion return nn.Sequential(*layers) def forward(self, x): out = nn.ReLU()(self.bn1(self.conv1(x))) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = self.avgpool(out) out = torch.flatten(out, 1) out = self.fc(out) return out
-
实例化模型: 根据你的任务需求(例如,CIFAR-10分类),选择合适的块类型和数量,然后实例化模型。
model = ResNet(BasicBlock, [2, 2, 2, 2])
-
定义损失函数和优化器: 选择合适的损失函数和优化器来训练模型。
criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
-
训练模型: 将数据加载到训练集和验证集中,然后进行训练。
for epoch in range(num_epochs): for i, (images, labels) in enumerate(trainloader): optimizer.zero_grad() outputs = model(images) loss = criterion(outputs, labels) loss.backward() optimizer.step() print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')
-
测试模型: 在测试集上评估模型的性能。
correct = 0 total = 0 with torch.no_grad(): for images, labels in testloader: outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print(f'Accuracy of the network on the test images: {100 * correct / total:.2f}%')
通过以上步骤,你可以在PyTorch中搭建一个基本的ResNet网络。根据具体任务的需求,你可以调整模型的架构、块类型和数量等参数。