这里是一个简单的比较Python和C#中的YOLO实现的例子:
Python版本:
import cv2 net = cv2.dnn.readNet("yolov3.weights", "yolov3.cfg") classes = [] with open("coco.names", "r") as f: classes = [line.strip() for line in f.readlines()] layer_names = net.getLayerNames() output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()] image = cv2.imread("image.jpg") blob = cv2.dnn.blobFromImage(image, 0.00392, (416, 416), (0, 0, 0), True, crop=False) net.setInput(blob) outs = net.forward(output_layers) for out in outs: for detection in out: scores = detection[5:] class_id = np.argmax(scores) confidence = scores[class_id] if confidence > 0.5: center_x = int(detection[0] * image.shape[1]) center_y = int(detection[1] * image.shape[0]) width = int(detection[2] * image.shape[1]) height = int(detection[3] * image.shape[0]) x = int(center_x - width / 2) y = int(center_y - height / 2) cv2.rectangle(image, (x, y), (x + width, y + height), (0, 255, 0), 2) cv2.putText(image, classes[class_id], (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2) cv2.imshow("Image", image) cv2.waitKey(0) cv2.destroyAllWindows()
C#版本:
using System; using System.Collections.Generic; using System.Drawing; using System.Drawing.Imaging; using System.IO; using System.Linq; using System.Net; using System.Net.Http; using System.Web; using System.Web.Http; public class YoloController : ApiController { [HttpPost] public IHttpActionResult DetectObjects() { string modelFilePath = HttpContext.Current.Server.MapPath("~/yolov3.weights"); string configFilePath = HttpContext.Current.Server.MapPath("~/yolov3.cfg"); string classesFilePath = HttpContext.Current.Server.MapPath("~/coco.names"); var classes = File.ReadAllLines(classesFilePath); var net = CvDnn.ReadNet(modelFilePath, configFilePath); var layerNames = net.GetLayerNames(); var outputLayers = layerNames.Where(l => net.GetUnconnectedOutLayers().Contains(l)).ToList(); var image = HttpContext.Current.Request.Files["image"]; var bitmap = new Bitmap(image.InputStream); var blob = CvDnn.BlobFromImage(bitmap, 0.00392, new Size(416, 416), new Scalar(0, 0, 0), true, false); net.SetInput(blob); var outs = net.Forward(outputLayers.ToArray()); foreach (var detection in outs) { var scores = detection.Skip(5); var classId = Array.IndexOf(scores, scores.Max()); var confidence = scores[classId]; if (confidence > 0.5) { var centerX = (int)(detection[0] * bitmap.Width); var centerY = (int)(detection[1] * bitmap.Height); var width = (int)(detection[2] * bitmap.Width); var height = (int)(detection[3] * bitmap.Height); var x = centerX - width / 2; var y = centerY - height / 2; using (var graphics = Graphics.FromImage(bitmap)) { graphics.DrawRectangle(Pens.Green, x, y, width, height); graphics.DrawString(classes[classId], new Font("Arial", 12), Brushes.Green, new PointF(x, y - 15)); } } } var outputStream = new MemoryStream(); bitmap.Save(outputStream, ImageFormat.Jpeg); return Ok(Convert.ToBase64String(outputStream.ToArray())); } }
这两个版本都使用了OpenCV的深度学习模块来实现YOLO目标检测算法。虽然Python和C#的代码语法和结构有所不同,但它们的实现原理是相似的。在Python版本中,我们使用了cv2来读取模型和图像,并进行目标检测的操作。而在C#版本中,我们使用了Emgu.CV库来实现相同的功能。无论是Python还是C#,都可以很容