要实现手势识别,可以使用MediaPipe库中的Hand Tracking和Hand Landmark模块。以下是一个简单的示例代码,演示如何使用MediaPipe实现手势识别:
import android.os.Bundle; import androidx.annotation.NonNull; import androidx.appcompat.app.AppCompatActivity; import com.google.mediapipe.components.CameraHelper; import com.google.mediapipe.components.PermissionHelper; import com.google.mediapipe.formats.proto.LandmarkProto.NormalizedLandmarkList; import com.google.mediapipe.formats.proto.LandmarkProto.NormalizedLandmark; import com.google.mediapipe.solutions.hands.HandLandmark; import com.google.mediapipe.solutions.hands.Hands; import com.google.mediapipe.solutions.hands.HandsResult; import com.google.mediapipe.solutions.hands.HandsOptions; import com.google.mediapipe.framework.AndroidAssetUtil; import com.google.mediapipe.framework.Packet; import com.google.mediapipe.framework.PacketGetter; import com.google.mediapipe.framework.TextureFrame; import com.google.mediapipe.glutil.EglManager; import com.google.mediapipe.glutil.GlTextureFrame; import com.google.mediapipe.components.TextureFrameConsumer; public class MainActivity extends AppCompatActivity { private static final String TAG = "MainActivity"; private static final String BINARY_GRAPH_NAME = "hand_tracking_mobile.pb"; private static final String INPUT_VIDEO_STREAM_NAME = "input_video"; private static final String OUTPUT_VIDEO_STREAM_NAME = "output_video"; private static final String LANDMARKS_STREAM_NAME = "hand_landmarks"; private static final CameraHelper.CameraFacing CAMERA_FACING = CameraHelper.CameraFacing.FRONT; private Hands hands; private CameraHelper cameraHelper; private TextureFrameConsumer videoConsumer; @Override protected void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(R.layout.activity_main); EglManager eglManager = new EglManager(null); hands = new Hands(this, HandsOptions.builder().build()); hands.setInputSidePackets(new Packet[] {}); cameraHelper = new CameraHelper(this, CAMERA_FACING, /*surfaceTexture=*/ null, /*previewDisplayView=*/ null); cameraHelper.setOnCameraStartedListener(surfaceTexture -> { videoConsumer = new TextureFrameConsumer() { @Override public void onNewFrame(TextureFrame textureFrame) { processFrame(textureFrame); } }; cameraHelper.setFrameProcessor(videoConsumer, eglManager); }); cameraHelper.startCamera(); } private void processFrame(TextureFrame textureFrame) { HandsResult handsResult = hands.process(textureFrame); if (handsResult.hasHandLandmarks()) { NormalizedLandmarkList landmarks = handsResult.getHandLandmarks(); processHandLandmarks(landmarks); } } private void processHandLandmarks(NormalizedLandmarkList landmarks) { for (NormalizedLandmark landmark : landmarks.getLandmarkList()) { float x = landmark.getX(); float y = landmark.getY(); float z = landmark.getZ(); // Do something with the landmark coordinates } } @Override protected void onResume() { super.onResume(); cameraHelper.startCamera(); } @Override protected void onPause() { super.onPause(); cameraHelper.stopCamera(); } @Override protected void onDestroy() { super.onDestroy(); hands.close(); } }
在这个示例代码中,我们首先创建了一个Hands实例,并设置了HandTracking的参数。然后通过CameraHelper来获取摄像头的帧,将每一帧传递给Hands实例的process方法进行手势识别。最后,我们可以从HandsResult中获取手部的关键点坐标,并进行进一步的处理。
请注意,此示例只是一个简单的演示,实际项目中可能需要根据具体的需求进行调整和优化。您可以查阅MediaPipe的官方文档以获取更多详细信息和示例代码。