在PyTorch中搭建神经网络通常涉及以下步骤:
-
导入必要的库:
import torch import torch.nn as nn import torch.optim as optim
-
定义网络结构: 你可以创建一个继承自
nn.Module
的类来定义你的网络结构。例如,一个简单的全连接神经网络可以如下定义:class SimpleNN(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(SimpleNN, self).__init__() self.fc1 = nn.Linear(input_size, hidden_size) self.relu = nn.ReLU() self.fc2 = nn.Linear(hidden_size, output_size) def forward(self, x): out = self.fc1(x) out = self.relu(out) out = self.fc2(out) return out
-
初始化网络、损失函数和优化器:
input_size = 784 # 假设输入是一个28x28的图像 hidden_size = 128 output_size = 10 # 假设输出是10个类别的概率分布 net = SimpleNN(input_size, hidden_size, output_size) criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.01)
-
准备数据集: 你需要将数据集加载到内存中,并进行必要的预处理。例如,对于图像数据,你可能需要将其展平为一维向量,并进行归一化。
from torchvision import datasets, transforms transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))]) train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True) test_dataset = datasets.MNIST(root='./data', train=False, download=True, transform=transform) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=64, shuffle=False)
-
训练网络:
num_epochs = 10 for epoch in range(num_epochs): for images, labels in train_loader: optimizer.zero_grad() outputs = net(images) loss = criterion(outputs, labels) loss.backward() optimizer.step() print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')
-
测试网络:
correct = 0 total = 0 with torch.no_grad(): for images, labels in test_loader: outputs = net(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print(f'Accuracy of the network on the test images: {100 * correct / total:.2f}%')
以上就是在PyTorch中搭建和训练一个简单神经网络的步骤。你可以根据自己的需求调整网络结构、损失函数和优化器,以及数据预处理的方式。