PyTorch是一个基于Python的科学计算库,它主要用于深度学习研究,特别是神经网络。在PyTorch中,你可以使用torch.nn
模块来构建卷积神经网络(CNN)。以下是一个简单的CNN示例:
import torch import torch.nn as nn import torch.optim as optim class SimpleCNN(nn.Module): def __init__(self, num_classes=10): super(SimpleCNN, self).__init__() # 卷积层1 self.conv1 = nn.Conv2d(in_channels=3, out_channels=16, kernel_size=3, stride=1, padding=1) # 激活函数 self.relu1 = nn.ReLU() # 池化层 self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2) # 卷积层2 self.conv2 = nn.Conv2d(in_channels=16, out_channels=32, kernel_size=3, stride=1, padding=1) # 激活函数 self.relu2 = nn.ReLU() # 池化层 self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2) # 全连接层 self.fc1 = nn.Linear(in_features=32 * 25 * 25, out_features=1024) self.relu3 = nn.ReLU() self.dropout = nn.Dropout(0.5) # 输出层 self.fc2 = nn.Linear(in_features=1024, out_features=num_classes) def forward(self, x): # 通过卷积层和激活函数 x = self.conv1(x) x = self.relu1(x) x = self.pool1(x) # 通过卷积层和激活函数 x = self.conv2(x) x = self.relu2(x) x = self.pool2(x) # 展平特征图 x = x.view(x.size(0), -1) # 通过全连接层和激活函数 x = self.fc1(x) x = self.relu3(x) x = self.dropout(x) # 输出结果 x = self.fc2(x) return x # 实例化网络 num_classes = 10 model = SimpleCNN(num_classes) # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=0.001) # 训练网络 for epoch in range(num_epochs): for images, labels in train_loader: optimizer.zero_grad() outputs = model(images) loss = criterion(outputs, labels) loss.backward() optimizer.step()
这个示例中,我们定义了一个简单的CNN网络,包含两个卷积层、两个池化层和两个全连接层。你可以根据你的任务和数据集来调整网络结构。