在Keras中实现GAN(生成对抗网络),需要分为两个部分:生成器(Generator)和判别器(Discriminator)。以下是一个简单的GAN实现示例:
- 导入必要的库:
from keras.models import Sequential from keras.layers import Dense, Activation from keras.optimizers import Adam
- 创建生成器模型(Generator):
def build_generator(input_dim, output_dim): model = Sequential() model.add(Dense(128, input_dim=input_dim)) model.add(Activation('relu')) model.add(Dense(output_dim)) model.add(Activation('sigmoid')) return model
- 创建判别器模型(Discriminator):
def build_discriminator(input_dim): model = Sequential() model.add(Dense(128, input_dim=input_dim)) model.add(Activation('relu')) model.add(Dense(1)) model.add(Activation('sigmoid')) return model
- 编译生成器和判别器模型:
input_dim = 100 # 生成器输入维度 output_dim = 784 # 生成器输出维度(MNIST图像大小) generator = build_generator(input_dim, output_dim) generator.compile(loss='binary_crossentropy', optimizer='adam') input_dim = 784 # 判别器输入维度 discriminator = build_discriminator(input_dim) discriminator.compile(loss='binary_crossentropy', optimizer='adam')
- 创建GAN模型,将生成器和判别器连接在一起:
gan = Sequential([generator, discriminator]) discriminator.trainable = False gan.compile(loss='binary_crossentropy', optimizer='adam')
- 训练GAN模型:
# 省略数据准备部分 for epoch in range(epochs): noise = np.random.normal(0, 1, (batch_size, input_dim)) generated_images = generator.predict(noise) real_labels = np.ones((batch_size, 1)) fake_labels = np.zeros((batch_size, 1)) discriminator.trainable = True d_loss_real = discriminator.train_on_batch(real_images, real_labels) d_loss_fake = discriminator.train_on_batch(generated_images, fake_labels) d_loss = 0.5 * np.add(d_loss_real, d_loss_fake) noise = np.random.normal(0, 1, (batch_size, input_dim)) gan_labels = np.ones((batch_size, 1)) discriminator.trainable = False g_loss = gan.train_on_batch(noise, gan_labels) # 打印损失等信息
以上是一个简单的GAN实现示例,实际应用中可能需要根据具体问题进行调整和优化。GAN的训练比较复杂,需要仔细调整超参数和网络结构,以获得最佳的生成效果。