117.info
人生若只如初见

Scikit-learn中怎么绘制学习曲线

要绘制学习曲线,可以使用learning_curve函数来实现。下面是一个示例代码:

import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import learning_curve
from sklearn.datasets import load_iris
from sklearn.linear_model import LogisticRegression

# 加载数据集
iris = load_iris()
X, y = iris.data, iris.target

# 初始化Logistic回归模型
model = LogisticRegression()

# 绘制学习曲线
train_sizes, train_scores, test_scores = learning_curve(model, X, y, train_sizes=np.linspace(0.1, 1.0, 10), cv=5)

train_scores_mean = np.mean(train_scores, axis=1)
train_scores_std = np.std(train_scores, axis=1)
test_scores_mean = np.mean(test_scores, axis=1)
test_scores_std = np.std(test_scores, axis=1)

plt.figure()
plt.title("Learning Curve")
plt.xlabel("Training examples")
plt.ylabel("Score")
plt.grid()

plt.fill_between(train_sizes, train_scores_mean - train_scores_std,
                 train_scores_mean + train_scores_std, alpha=0.1,
                 color="r")
plt.fill_between(train_sizes, test_scores_mean - test_scores_std,
                 test_scores_mean + test_scores_std, alpha=0.1, color="g")
plt.plot(train_sizes, train_scores_mean, 'o-', color="r", label="Training score")
plt.plot(train_sizes, test_scores_mean, 'o-', color="g", label="Cross-validation score")

plt.legend(loc="best")
plt.show()

这段代码将绘制Logistic回归模型在不同训练数据量下的学习曲线,可以直观地观察模型的训练和验证表现。

未经允许不得转载 » 本文链接:https://www.117.info/ask/fe93eAzsIBwBfA1A.html

推荐文章

  • Scikit-learn中怎么实现线性回归

    在Scikit-learn中,可以使用LinearRegression类来实现线性回归。下面是一个简单的示例代码:
    from sklearn.linear_model import LinearRegression
    imp...

  • Scikit-learn中怎么使用特征提取

    在Scikit-learn中,特征提取通常是通过特征提取器(如CountVectorizer、TfidfVectorizer等)来实现的。下面是一个简单的使用CountVectorizer来提取文本特征的示例...

  • Scikit-learn中怎么使用特征选择

    在Scikit-learn中,可以使用特征选择技术通过sklearn.feature_selection模块中提供的方法来选择最重要的特征。下面是一个简单的例子来展示如何使用特征选择:

  • Scikit-learn中怎么使用数据归一化

    使用Scikit-learn中的数据归一化,可以使用preprocessing模块中的MinMaxScaler类来实现。具体步骤如下: 导入MinMaxScaler类: from sklearn.preprocessing impo...

  • Scikit-learn中怎么评估模型性能

    Scikit-learn中有多种方法可以用来评估模型性能,常用的方法包括: 使用交叉验证(Cross-validation):通过将数据集分成多个子集,然后训练模型和评估性能多次,...

  • Scikit-learn中怎么实现交叉验证

    在Scikit-learn中实现交叉验证可以使用cross_val_score函数。该函数可以帮助我们评估模型的性能,并且可以指定交叉验证的折数。
    下面是一个示例代码:

  • Scikit-learn中怎么实现随机搜索

    在Scikit-learn中,可以使用RandomizedSearchCV来实现随机搜索。RandomizedSearchCV会在指定的参数空间中随机选择一组参数组合,并对这些参数组合进行交叉验证来...

  • Scikit-learn中怎么实现网格搜索

    在Scikit-learn中,可以使用GridSearchCV类实现网格搜索。GridSearchCV类可以用来选择最优的参数组合,从而优化模型的性能。
    下面是一个简单的示例代码,演...