在PyTorch中,nn.Sequential
是一个用于构建神经网络模型的容器。它可以按照顺序将多个层组合在一起,以构建深度神经网络。
nn.Sequential
的用法如下所示:
import torch.nn as nn model = nn.Sequential( nn.Linear(input_size, hidden_size), # 添加输入层 nn.ReLU(), # 添加激活函数 nn.Linear(hidden_size, output_size), # 添加输出层 nn.Sigmoid() # 添加激活函数 )
在上述示例中,nn.Sequential
按照顺序添加了四个层:一个线性层,一个ReLU激活函数,另一个线性层以及一个Sigmoid激活函数。这些层将按照添加的顺序依次被应用于输入数据,以生成最终的输出。
可以通过调用model(x)
来使用这个nn.Sequential
模型,其中x
是输入数据。模型将依次将输入数据传递给添加的每个层,并生成最终的输出。