在PyTorch中实现自注意力机制可以使用torch.nn.MultiheadAttention
模块。具体实现步骤如下:
- 导入必要的库:
import torch import torch.nn as nn
- 定义自注意力机制模块:
class SelfAttention(nn.Module): def __init__(self, embed_size, heads): super(SelfAttention, self).__init__() self.embed_size = embed_size self.heads = heads self.head_dim = embed_size // heads assert self.head_dim * heads == embed_size, "Embed size needs to be divisible by heads" self.values = nn.Linear(self.head_dim, self.head_dim, bias=False) self.keys = nn.Linear(self.head_dim, self.head_dim, bias=False) self.queries = nn.Linear(self.head_dim, self.head_dim, bias=False) self.fc_out = nn.Linear(heads * self.head_dim, embed_size)
- 实现自注意力机制的前向传播方法:
def forward(self, value, key, query, mask=None): N = query.shape[0] value_len, key_len, query_len = value.shape[1], key.shape[1], query.shape[1] # Split the embedding into self.heads pieces values = value.reshape(N, value_len, self.heads, self.head_dim) keys = key.reshape(N, key_len, self.heads, self.head_dim) queries = query.reshape(N, query_len, self.heads, self.head_dim) values = self.values(values) keys = self.keys(keys) queries = self.queries(queries) energy = torch.einsum("nqhd, nkhd->nhqk", [queries, keys]) if mask is not None: energy = energy.masked_fill(mask == 0, float("-1e20")) attention = torch.softmax(energy / (self.embed_size ** (1/2)), dim=3) out = torch.einsum("nhql, nlhd->nqhd", [attention, values]).reshape( N, query_len, self.heads * self.head_dim ) out = self.fc_out(out) return out
- 使用自注意力机制模块进行实验:
# Define input tensor value = https://www.yisu.com/ask/torch.rand(3, 10, 512) # (N, value_len, embed_size)>通过以上步骤,就可以在PyTorch中实现自注意力机制。