在PyTorch中搭建卷积神经网络通常包括以下几个步骤:
- 导入必要的库和模块:
import torch import torch.nn as nn import torch.nn.functional as F
- 创建一个继承自
nn.Module
的自定义卷积神经网络类:
class CNN(nn.Module): def __init__(self): super(CNN, self).__init__() # 定义卷积层 self.conv1 = nn.Conv2d(in_channels=1, out_channels=16, kernel_size=3, stride=1, padding=1) # 定义池化层 self.pool = nn.MaxPool2d(kernel_size=2, stride=2) # 定义全连接层 self.fc1 = nn.Linear(16*14*14, 128) # 假设输入图像大小为28x28 self.fc2 = nn.Linear(128, 10) # 10为输出类别数
- 实现
forward
方法,定义网络的前向传播过程:
def forward(self, x): x = F.relu(self.conv1(x)) x = self.pool(x) x = x.view(-1, 16*14*14) x = F.relu(self.fc1(x)) x = self.fc2(x) return x
- 实例化网络模型并定义损失函数和优化器:
model = CNN() criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
- 训练模型:
for epoch in range(num_epochs): for i, (images, labels) in enumerate(train_loader): optimizer.zero_grad() outputs = model(images) loss = criterion(outputs, labels) loss.backward() optimizer.step() if (i+1) % 100 == 0: print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}' .format(epoch+1, num_epochs, i+1, total_step, loss.item()))
以上是一个简单的卷积神经网络的搭建过程,你可以根据自己的需求和问题的复杂度进行更复杂的网络设计和训练。