117.info
人生若只如初见

如何结合其他函数使用Python的fillna

fillna() 是一个用于填充缺失值(NaN)的函数,通常在 Pandas DataFrame 或 Series 中使用

首先,我们需要导入所需的库并创建一个包含缺失值的示例 DataFrame:

import pandas as pd
import numpy as np

data = https://www.yisu.com/ask/{'A': [1, 2, np.nan], 'B': [4, np.nan, 6], 'C': [7, 8, 9]}
df = pd.DataFrame(data)
print("原始 DataFrame:")
print(df)

这将输出以下 DataFrame:

原始 DataFrame:
     A    B  C
0  1.0  4.0  7
1  2.0  NaN  8
2  NaN  6.0  9

现在,让我们使用 fillna() 函数填充缺失值。有多种方法可以实现这一点:

  1. 使用特定值填充:
filled_df = df.fillna(value=https://www.yisu.com/ask/0)"使用特定值填充后的 DataFrame:")
print(filled_df)

这将输出以下 DataFrame:

使用特定值填充后的 DataFrame:
     A    B  C
0  1.0  4.0  7
1  2.0  0.0  8
2  0.0  6.0  9
  1. 使用前一个值填充:
filled_df = df.fillna(method='ffill')
print("使用前一个值填充后的 DataFrame:")
print(filled_df)

这将输出以下 DataFrame:

使用前一个值填充后的 DataFrame:
     A    B  C
0  1.0  4.0  7
1  2.0  4.0  8
2  2.0  6.0  9
  1. 使用后一个值填充:
filled_df = df.fillna(method='bfill')
print("使用后一个值填充后的 DataFrame:")
print(filled_df)

这将输出以下 DataFrame:

使用后一个值填充后的 DataFrame:
     A    B  C
0  1.0  4.0  7
1  2.0  6.0  8
2  1.0  6.0  9
  1. 使用平均值、中位数或众数等统计方法填充:
filled_df = df.fillna(df.mean())
print("使用平均值填充后的 DataFrame:")
print(filled_df)

filled_df = df.fillna(df.median())
print("使用中位数填充后的 DataFrame:")
print(filled_df)

filled_df = df.apply(lambda x: x.fillna(x.mode().iloc[0]))
print("使用众数填充后的 DataFrame:")
print(filled_df)

这些示例展示了如何结合其他函数使用 fillna() 来填充 DataFrame 中的缺失值。您可以根据需求选择适当的填充方法。

未经允许不得转载 » 本文链接:https://www.117.info/ask/fe677AzsBAgZVAQ.html

推荐文章

  • Python工作流是什么

    Python工作流是一种使用Python编程语言来执行特定任务或流程的方式。它通常涉及使用Python编写的脚本来自动化一系列操作,例如数据处理、文件操作、网络通信等。...

  • Python工作流和Shell脚本对比

    Python工作流和Shell脚本都是用来自动化任务和流程的工具,但它们之间存在一些区别。 语法:Python是一种通用编程语言,具有丰富的功能和库,可以进行复杂的数据...

  • 为什么选Python做工作流

    选择Python做工作流的原因有以下几点: 简单易学:Python语法简洁清晰,易于学习和使用,可以快速上手开发工作流。 开源社区支持:Python拥有庞大的开源社区和丰...

  • Python工作流有哪些最佳实践

    使用虚拟环境:在项目中使用虚拟环境可以避免依赖冲突和版本不一致的问题,建议使用virtualenv或者conda创建虚拟环境。 使用版本控制:使用Git等版本控制工具来管...

  • fillna函数与其他数据处理方法的对比

    在Python的数据处理中,处理缺失值是常见的需求。Pandas库提供了多种方法来处理缺失值,其中fillna和dropna是最常用的两种方法。此外,插值方法如interpolate也是...

  • Python中fillna函数的性能优化

    在Python中,fillna()函数通常用于填充缺失值 使用内置方法:Pandas库提供了一些内置方法来填充缺失值,如ffill()、bfill()和pad()等。这些方法比fillna()更快,...

  • fillna函数在Pandas库中的使用技巧

    fillna() 函数是 Pandas 库中的一个重要函数,用于填充 DataFrame 或 Series 中的缺失值(NaN) 使用特定值填充:
    你可以使用 fillna() 函数将缺失值替换为...

  • 如何用fillna函数处理特定类型的缺失值

    fillna() 函数通常用于填充缺失值,例如 NaN(Not a Number)或 None
    首先,导入所需库并创建一个包含缺失值的 DataFrame:
    import pandas as pd