PyTorch是一种基于Python的科学计算库,用于深度学习研究。以下是使用PyTorch训练卷积神经网络的基本步骤:
- 导入所需库:
import torch import torch.nn as nn import torch.optim as optim import torchvision import torchvision.transforms as transforms
- 定义卷积神经网络模型:
class ConvNet(nn.Module): def __init__(self): super(ConvNet, self).__init__() self.layer1 = nn.Sequential( nn.Conv2d(in_channels=3, out_channels=16, kernel_size=3, stride=1, padding=1), nn.BatchNorm2d(16), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2) ) self.layer2 = nn.Sequential( nn.Conv2d(in_channels=16, out_channels=32, kernel_size=3, stride=1, padding=1), nn.BatchNorm2d(32), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2) ) self.fc = nn.Linear(32 * 25 * 25, 10) def forward(self, x): x = self.layer1(x) x = self.layer2(x) x = x.view(x.size(0), -1) x = self.fc(x) return x
- 准备数据集:
transform = transforms.Compose([transforms.Resize((32, 32)), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=100, shuffle=True, num_workers=2) testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform) testloader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=False, num_workers=2)
- 初始化模型、损失函数和优化器:
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model = ConvNet().to(device) criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
- 训练模型:
num_epochs = 10
for epoch in range(num_epochs):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
print(f"Epoch {epoch + 1}, Loss: {running_loss / (i + 1)}")
print("Training finished.")
- 测试模型:
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
images, labels = data
images, labels = images.to(device), labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print(f"Accuracy of the network on the test images: {100 * correct / total}%")
以上就是使用PyTorch训练卷积神经网络的基本步骤。你可以根据自己的需求对网络结构、数据集和训练参数进行调整。