在PaddlePaddle中实现图像分类任务通常使用卷积神经网络(CNN)。以下是一个简单的图像分类示例:
- 导入必要的库和模块:
import paddle import paddle.nn.functional as F from paddle.vision import transforms
- 定义一个简单的卷积神经网络模型:
class Net(paddle.nn.Layer): def __init__(self, num_classes=10): super(Net, self).__init__() self.conv1 = paddle.nn.Conv2D(in_channels=3, out_channels=32, kernel_size=3, stride=1, padding=1) self.pool1 = paddle.nn.MaxPool2D(kernel_size=2, stride=2) self.conv2 = paddle.nn.Conv2D(in_channels=32, out_channels=64, kernel_size=3, stride=1, padding=1) self.pool2 = paddle.nn.MaxPool2D(kernel_size=2, stride=2) self.fc1 = paddle.nn.Linear(in_features=64*8*8, out_features=128) self.fc2 = paddle.nn.Linear(in_features=128, out_features=num_classes) def forward(self, x): x = self.pool1(F.relu(self.conv1(x))) x = self.pool2(F.relu(self.conv2(x))) x = paddle.flatten(x, start_axis=1) x = F.relu(self.fc1(x)) x = self.fc2(x) return x
- 准备数据和数据增强:
transform = transforms.Compose([ transforms.Resize(size=32), transforms.RandomHorizontalFlip(), transforms.ToTensor() ]) train_dataset = paddle.vision.datasets.CIFAR10(mode='train', transform=transform) train_loader = paddle.io.DataLoader(train_dataset, batch_size=32, shuffle=True) test_dataset = paddle.vision.datasets.CIFAR10(mode='test', transform=transform) test_loader = paddle.io.DataLoader(test_dataset, batch_size=32, shuffle=False)
- 训练模型:
model = Net() optimizer = paddle.optimizer.Adam(parameters=model.parameters()) criterion = paddle.nn.CrossEntropyLoss() model.train() for epoch in range(10): for data in train_loader: images, labels = data outputs = model(images) loss = criterion(outputs, labels) optimizer.clear_grad() loss.backward() optimizer.step()
- 在测试集上评估模型:
model.eval() accs = [] for data in test_loader: images, labels = data outputs = model(images) acc = paddle.metric.accuracy(outputs, labels) accs.append(acc.numpy()) print("Test Accuracy: ", sum(accs) / len(accs))
这是一个简单的图像分类示例,实际应用中可以根据需求调整网络结构、数据增强方式、优化器等参数进行优化。