117.info
人生若只如初见

Hive3.x相对于Hive2.x有哪些新特性和改进

  1. Vectorized query execution: Hive 3.x introduces vectorized query execution which processes multiple rows at a time, resulting in improved performance compared to row-by-row processing in Hive 2.x.

  2. ACID transaction support: Hive 3.x adds support for ACID (Atomicity, Consistency, Isolation, Durability) transactions, allowing for more reliable and consistent data operations.

  3. Improved query optimization: Hive 3.x includes several improvements to query optimization, such as better cost-based optimization and the ability to push down certain operations to storage systems like Apache HBase.

  4. Enhancements to LLAP (Live Long and Process): Hive 3.x includes enhancements to LLAP, a long-running daemon that provides interactive query performance, including improved memory management and caching mechanisms.

  5. Improved integration with Apache Ranger: Hive 3.x offers improved integration with Apache Ranger for fine-grained access control and security policies.

  6. Compatibility with Hadoop 3: Hive 3.x is compatible with Hadoop 3, allowing users to take advantage of new features and improvements in the latest version of Hadoop.

  7. Better support for complex data types: Hive 3.x provides better support for complex data types like arrays, maps, and structs, making it easier to work with nested data structures.

  8. Improved support for SQL standards: Hive 3.x includes improvements to its SQL capabilities, such as better support for SQL standards like ANSI SQL and improved compatibility with other SQL-based tools and frameworks.

未经允许不得转载 » 本文链接:https://www.117.info/ask/fe3d0AzsICQ9eBlI.html

推荐文章

  • hive中concat函数怎样避免数据倾斜

    在Hive中,concat函数用于连接两个或多个字符串列。数据倾斜是指在进行MapReduce计算时,某些任务处理的数据量远大于其他任务,导致整个作业运行缓慢。为了避免数...

  • hive中concat函数能拼接多少列

    Hive中的concat函数用于将两个或多个字符串列连接成一个字符串。至于能拼接多少列,这实际上取决于你的具体需求和数据。理论上,只要你有足够的列需要连接,就可...

  • hive中concat函数怎样处理空值

    在Hive中,concat函数用于连接两个或多个字符串。当使用concat函数处理空值时,它会自动忽略空值。这意味着如果其中一个输入参数为空,那么结果将只包含其他非空...

  • hive中lateralview与explode区别

    Hive中的LATERAL VIEW和EXPLODE都是用于处理复杂数据结构的工具,但它们在使用方式和目的上有一些显著的区别。 LATERAL VIEW: LATERAL VIEW允许你将一个行扩展为...

  • Hive中的时间序列分析是如何进行的

    在Hive中进行时间序列分析通常涉及以下步骤: 创建时间序列数据表:首先,需要创建一个包含时间序列数据的表。可以使用Hive的CREATE TABLE语句来定义表结构,并将...

  • Hive中的数据仓库设计模式有哪些常见模式

    在Hive中,常见的数据仓库设计模式包括以下几种: 星型模式(Star Schema):星型模式是数据仓库中最常见的模式之一,通常包含一个中心的事实表,与多个维度表相...

  • Keras中如何实现序列生成任务

    在Keras中实现序列生成任务,通常涉及使用循环神经网络(RNN)或者长短期记忆网络(LSTM)。以下是一个简单的示例,演示如何使用LSTM模型生成一个文本序列:

  • Keras中如何实现迁移学习

    在Keras中实现迁移学习通常需要以下步骤: 加载预训练的模型:首先要加载一个预训练的模型,通常会使用一些流行的模型,如VGG、ResNet、Inception等。 冻结模型的...