在PyTorch中实现多GPU并行训练可以通过使用torch.nn.DataParallel
模块或torch.nn.parallel.DistributedDataParallel
模块来实现。下面分别介绍这两种方法的实现步骤:
- 使用
torch.nn.DataParallel
模块:
import torch import torch.nn as nn from torch.utils.data import DataLoader # 构建模型 model = nn.Sequential( nn.Linear(10, 100), nn.ReLU(), nn.Linear(100, 1) ) # 将模型放到多个GPU上 model = nn.DataParallel(model) # 定义损失函数和优化器 criterion = nn.MSELoss() optimizer = torch.optim.SGD(model.parameters(), lr=0.01) # 构建数据加载器 train_loader = DataLoader(dataset, batch_size=64, shuffle=True) # 开始训练 for epoch in range(num_epochs): for inputs, targets in train_loader: outputs = model(inputs) loss = criterion(outputs, targets) optimizer.zero_grad() loss.backward() optimizer.step()
- 使用
torch.nn.parallel.DistributedDataParallel
模块:
import torch import torch.nn as nn from torch.utils.data import DataLoader import torch.distributed as dist # 初始化进程组 dist.init_process_group(backend='nccl') # 构建模型 model = nn.Sequential( nn.Linear(10, 100), nn.ReLU(), nn.Linear(100, 1) ) # 将模型放到多个GPU上 model = nn.parallel.DistributedDataParallel(model) # 定义损失函数和优化器 criterion = nn.MSELoss() optimizer = torch.optim.SGD(model.parameters(), lr=0.01) # 构建数据加载器 train_loader = DataLoader(dataset, batch_size=64, shuffle=True) # 开始训练 for epoch in range(num_epochs): for inputs, targets in train_loader: outputs = model(inputs) loss = criterion(outputs, targets) optimizer.zero_grad() loss.backward() optimizer.step()
以上是使用torch.nn.DataParallel
和torch.nn.parallel.DistributedDataParallel
模块在PyTorch中实现多GPU并行训练的方法。根据具体需求选择合适的模块来实现多GPU训练。