递归实现C++代码如下:
#include
#include
void merge(std::vector<int>& arr, int left, int mid, int right) {
int n1 = mid - left + 1;
int n2 = right - mid;
std::vector L(n1);
std::vector R(n2);
for (int i = 0; i < n1; i++) {
L[i] = arr[left + i];
}
for (int j = 0; j < n2; j++) {
R[j] = arr[mid + 1 + j];
}
int i = 0;
int j = 0;
int k = left;
while (i < n1 && j < n2) {
if (L[i] <= R[j]) {
arr[k] = L[i];
i++;
} else {
arr[k] = R[j];
j++;
}
k++;
}
while (i < n1) {
arr[k] = L[i];
i++;
k++;
}
while (j < n2) {
arr[k] = R[j];
j++;
k++;
}
}
void mergeSort(std::vector<int>& arr, int left, int right) {
if (left < right) {
int mid = left + (right - left) / 2;
mergeSort(arr, left, mid);
mergeSort(arr, mid + 1, right);
merge(arr, left, mid, right);
}
}
int main() {
std::vector arr = {12, 11, 13, 5, 6, 7};
int n = arr.size();
mergeSort(arr, 0, n - 1);
std::cout << "Sorted array: ";
for (int i = 0; i < n; i++) {
std::cout << arr[i] << " ";
}
std::cout << std::endl;
return 0;
}
非递归实现C++代码如下:
#include
#include
void merge(std::vector<int>& arr, int left, int mid, int right) {
int n1 = mid - left + 1;
int n2 = right - mid;
std::vector L(n1);
std::vector R(n2);
for (int i = 0; i < n1; i++) {
L[i] = arr[left + i];
}
for (int j = 0; j < n2; j++) {
R[j] = arr[mid + 1 + j];
}
int i = 0;
int j = 0;
int k = left;
while (i < n1 && j < n2) {
if (L[i] <= R[j]) {
arr[k] = L[i];
i++;
} else {
arr[k] = R[j];
j++;
}
k++;
}
while (i < n1) {
arr[k] = L[i];
i++;
k++;
}
while (j < n2) {
arr[k] = R[j];
j++;
k++;
}
}
void mergeSort(std::vector<int>& arr) {
int n = arr.size();
int curr_size;
int left_start;
for (curr_size = 1; curr_size <= n - 1; curr_size = 2 * curr_size) {
for (left_start = 0; left_start < n - 1; left_start += 2 * curr_size) {
int mid = std::min(left_start + curr_size - 1, n - 1);
int right = std::min(left_start + 2 * curr_size - 1, n - 1);
merge(arr, left_start, mid, right);
}
}
}
int main() {
std::vector arr = {12, 11, 13, 5, 6, 7};
mergeSort(arr);
std::cout << "Sorted array: ";
for (int i = 0; i < arr.size(); i++) {
std::cout << arr[i] << " ";
}
std::cout << std::endl;
return 0;
}
这两种方法都是通过将数组分成两半,递归或迭代地对每一半进行排序,然后再将两个有序的子数组合并成一个有序的数组。