Redis可以使用令牌桶算法来实现分布式限流。令牌桶算法是一种常用的限流算法,它通过维护一个固定容量的令牌桶,每秒钟往桶里放入一定数量的令牌。当请求到达时,如果令牌桶中有足够的令牌,那么允许请求通过并消耗一个令牌;如果令牌桶中没有足够的令牌,则拒绝请求。
以下是使用Redis实现分布式限流的步骤:
- 使用Redis的Lua脚本编写一个令牌桶算法的限流器。Lua脚本可以在Redis服务器端执行,可以保证原子性。以下是一个简单的令牌桶算法的Lua脚本示例:
local key = KEYS[1] local capacity = tonumber(ARGV[1]) local rate = tonumber(ARGV[2]) local now = tonumber(ARGV[3]) local tokens_key = key .. ":tokens" local timestamp_key = key .. ":timestamp" local tokens = tonumber(redis.call("get", tokens_key)) if not tokens then tokens = capacity end local last_refreshed = tonumber(redis.call("get", timestamp_key)) if not last_refreshed then last_refreshed = now end local delta = math.max(0, now - last_refreshed) local filled_tokens = math.min(capacity, tokens + delta * rate) local allowed = filled_tokens >= 1 local new_tokens = filled_tokens local new_timestamp = last_refreshed if allowed then new_tokens = filled_tokens - 1 new_timestamp = now end redis.call("set", tokens_key, new_tokens) redis.call("set", timestamp_key, new_timestamp) return allowed
- 在代码中调用该Lua脚本,传入限流器的唯一标识符、限流器的容量、限流器的速率以及当前时间戳作为参数,获取限流结果。
import redis.clients.jedis.Jedis; import redis.clients.jedis.JedisPool; public class RedisRateLimiter { private JedisPool jedisPool; public RedisRateLimiter(JedisPool jedisPool) { this.jedisPool = jedisPool; } public boolean allowRequest(String key, int capacity, int rate) { try (Jedis jedis = jedisPool.getResource()) { long now = System.currentTimeMillis(); Object result = jedis.eval( "local key = KEYS[1]\n" + "local capacity = tonumber(ARGV[1])\n" + "local rate = tonumber(ARGV[2])\n" + "local now = tonumber(ARGV[3])\n" + "\n" + "local tokens_key = key .. \":tokens\"\n" + "local timestamp_key = key .. \":timestamp\"\n" + "\n" + "local tokens = tonumber(redis.call(\"get\", tokens_key))\n" + "if not tokens then\n" + " tokens = capacity\n" + "end\n" + "\n" + "local last_refreshed = tonumber(redis.call(\"get\", timestamp_key))\n" + "if not last_refreshed then\n" + " last_refreshed = now\n" + "end\n" + "\n" + "local delta = math.max(0, now - last_refreshed)\n" + "local filled_tokens = math.min(capacity, tokens + delta * rate)\n" + "local allowed = filled_tokens >= 1\n" + "\n" + "local new_tokens = filled_tokens\n" + "local new_timestamp = last_refreshed\n" + "if allowed then\n" + " new_tokens = filled_tokens - 1\n" + " new_timestamp = now\n" + "end\n" + "\n" + "redis.call(\"set\", tokens_key, new_tokens)\n" + "redis.call(\"set\", timestamp_key, new_timestamp)\n" + "\n" + "return allowed", 1, key, Integer.toString(capacity), Integer.toString(rate), Long.toString(now) ); return (Boolean) result; } } }
- 在需要进行限流的地方调用RedisRateLimiter的allowRequest方法进行