117.info
人生若只如初见

pytorch mnist分类模型怎么构建

要使用PyTorch构建一个简单的MNIST分类模型,你可以按照以下步骤进行:

  1. 导入所需库:
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
  1. 定义模型结构:
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.fc1 = nn.Linear(28 * 28, 128)
        self.fc2 = nn.Linear(128, 64)
        self.fc3 = nn.Linear(64, 10)
        self.dropout = nn.Dropout(0.5)

    def forward(self, x):
        x = x.view(-1, 28 * 28)
        x = torch.relu(self.fc1(x))
        x = self.dropout(x)
        x = torch.relu(self.fc2(x))
        x = self.dropout(x)
        x = self.fc3(x)
        return x
  1. 下载并加载MNIST数据集:
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])

trainset = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True)

testset = torchvision.datasets.MNIST(root='./data', train=False, download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=64, shuffle=False)
  1. 初始化模型、损失函数和优化器:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = Net().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
  1. 训练模型:
num_epochs = 10
for epoch in range(num_epochs):
    for i, data in enumerate(trainloader, 0):
        inputs, labels = data
        inputs, labels = inputs.to(device), labels.to(device)

        optimizer.zero_grad()
        outputs = model(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

    print(f"Epoch {epoch + 1}, Loss: {loss.item():.4f}")
  1. 测试模型:
model.eval()
with torch.no_grad():
    correct = 0
    total = 0
    for data in testloader:
        images, labels = data
        images, labels = images.to(device), labels.to(device)
        outputs = model(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

print(f"Accuracy of the network on the test images: {100 * correct / total:.2f}%")

这个简单的例子展示了如何使用PyTorch构建一个基本的MNIST分类模型。你可以根据需要调整模型结构、损失函数和优化器参数以获得更好的性能。

未经允许不得转载 » 本文链接:https://www.117.info/ask/fe26bAzsKAABWDFY.html

推荐文章

  • pytorch画图如何绘制简单曲线

    在PyTorch中,可以使用matplotlib库来绘制简单的曲线。以下是一个示例代码:
    import torch
    import matplotlib.pyplot as plt # 创建一个简单的数据集<...

  • pytorch画图如何绘制散点图

    在PyTorch中,您可以使用matplotlib库来绘制散点图。首先,确保已经安装了matplotlib库。如果没有安装,可以使用以下命令进行安装:
    pip install matplotli...

  • pytorch画图怎样调整图像分辨率

    在PyTorch中,可以使用PIL库(Python Imaging Library)来调整图像分辨率。以下是一个简单的示例,展示了如何使用PIL库将图像调整为指定分辨率:
    首先,确保...

  • pytorch画图如何进行多图绘制

    在PyTorch中,可以使用torchvision.utils.make_grid()函数进行多图绘制。这个函数可以将多个图像拼接成一个网格图。以下是一个简单的示例:
    首先,确保已经...

  • pytorch mnist分类能快速收敛吗

    PyTorch实现MNIST手写数字分类可以快速收敛,但具体收敛速度取决于模型结构、训练数据、优化器选择以及超参数设置等多个因素。以下是一些关键要点和技巧,可以帮...

  • pytorch调参隐藏层节点数咋定

    在PyTorch中调整隐藏层节点数的过程,通常涉及对模型性能的细致调整和优化。以下是一些关键点和步骤,指导你如何有效确定和调整隐藏层节点数:
    确定隐藏层节...

  • pytorch调参批大小如何变动

    在PyTorch中,调整批量大小(batch size)是一个重要的超参数,它会影响模型的训练速度、内存使用和最终性能。以下是一些关于如何调整批量大小的步骤和建议: 确...

  • pytorch调参权重衰减怎么设

    在PyTorch中,权重衰减(weight decay)是一种正则化技术,用于防止模型过拟合。它通过在损失函数中添加一个惩罚项来实现,这个惩罚项是模型参数的平方和乘以权重...