PyTorch的离线模型可以使用多种方法进行加载和使用。以下是一些示例代码:
- 使用
torch.jit.load()
函数加载预训练模型:
import torch model = torch.jit.load('path/to/model.pt')
- 使用
torch.nn.Module.load_state_dict()
函数加载预训练模型的状态字典:
import torch import torchvision.models as models model = models.resnet18(pretrained=False) state_dict = torch.load('path/to/model.pt') model.load_state_dict(state_dict)
- 使用
torch.nn.DataParallel
类加载并行化的预训练模型:
import torch import torchvision.models as models model = models.resnet18(pretrained=False) model = torch.nn.DataParallel(model) model.load_state_dict(torch.load('path/to/model.pt'))
- 使用
torch.nn.parallel.DistributedDataParallel
类加载分布式预训练模型:
import torch import torchvision.models as models model = models.resnet18(pretrained=False) model = torch.nn.parallel.DistributedDataParallel(model) model.load_state_dict(torch.load('path/to/model.pt'))
无论使用哪种方法,都需要将模型加载到PyTorch中,然后可以使用model()
函数进行前向传递,得到模型的输出。例如:
input = torch.randn(1, 3, 224, 224) output = model(input)