要搭建一个基本的PyTorch卷积神经网络,你需要做以下几个步骤:
- 导入PyTorch库
import torch import torch.nn as nn import torch.optim as optim
- 定义一个继承自
nn.Module
的卷积神经网络类
class CNN(nn.Module): def __init__(self): super(CNN, self).__init__() self.conv1 = nn.Conv2d(in_channels=1, out_channels=16, kernel_size=3, stride=1, padding=1) self.relu = nn.ReLU() self.maxpool = nn.MaxPool2d(kernel_size=2, stride=2) self.fc = nn.Linear(16 * 14 * 14, 10) def forward(self, x): x = self.conv1(x) x = self.relu(x) x = self.maxpool(x) x = x.view(x.size(0), -1) x = self.fc(x) return x
- 实例化神经网络模型并定义损失函数和优化器
model = CNN() criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=0.001)
- 训练神经网络模型
for epoch in range(num_epochs): for i, data in enumerate(train_loader): inputs, labels = data optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step()
这样就可以搭建一个简单的PyTorch卷积神经网络模型了。你可以根据自己的需求调整模型的结构和参数。