在PyTorch中实现Transformer模型需要定义Transformer的各个组件,包括Encoder、Decoder、Multihead Attention、Feedforward等。以下是一个简单的Transformer模型的实现示例:
import torch import torch.nn as nn import torch.nn.functional as F # 定义Multihead Attention层 class MultiheadAttention(nn.Module): def __init__(self, d_model, n_head): super(MultiheadAttention, self).__init__() self.d_model = d_model self.n_head = n_head self.head_dim = d_model // n_head self.fc_q = nn.Linear(d_model, d_model) self.fc_k = nn.Linear(d_model, d_model) self.fc_v = nn.Linear(d_model, d_model) self.fc_o = nn.Linear(d_model, d_model) def forward(self, q, k, v): q = self.fc_q(q) k = self.fc_k(k) v = self.fc_v(v) q = q.view(q.size(0), -1, self.n_head, self.head_dim).transpose(1, 2) k = k.view(k.size(0), -1, self.n_head, self.head_dim).transpose(1, 2) v = v.view(v.size(0), -1, self.n_head, self.head_dim).transpose(1, 2) attention = F.softmax(torch.matmul(q, k.transpose(-2, -1)) / self.head_dim, dim=-1) output = torch.matmul(attention, v).transpose(1, 2).contiguous().view(q.size(0), -1, self.d_model) output = self.fc_o(output) return output # 定义Feedforward层 class Feedforward(nn.Module): def __init__(self, d_model, d_ff): super(Feedforward, self).__init__() self.fc1 = nn.Linear(d_model, d_ff) self.fc2 = nn.Linear(d_ff, d_model) def forward(self, x): x = F.relu(self.fc1(x)) x = self.fc2(x) return x # 定义Encoder层 class EncoderLayer(nn.Module): def __init__(self, d_model, n_head, d_ff): super(EncoderLayer, self).__init__() self.multihead_attention = MultiheadAttention(d_model, n_head) self.feedforward = Feedforward(d_model, d_ff) def forward(self, x): att_output = self.multihead_attention(x, x, x) ff_output = self.feedforward(att_output) output = x + att_output + ff_output return output # 定义Transformer模型 class Transformer(nn.Module): def __init__(self, d_model, n_head, d_ff, num_layers): super(Transformer, self).__init__() self.encoder_layers = nn.ModuleList([EncoderLayer(d_model, n_head, d_ff) for _ in range(num_layers)]) def forward(self, x): for encoder_layer in self.encoder_layers: x = encoder_layer(x) return x # 使用Transformer模型 d_model = 512 n_head = 8 d_ff = 2048 num_layers = 6 transformer = Transformer(d_model, n_head, d_ff, num_layers) input_data = https://www.yisu.com/ask/torch.randn(10, 20, d_model)>在这个示例中,我们定义了Multihead Attention层、Feedforward层、EncoderLayer和Transformer模型,并使用这些组件来构建一个简单的Transformer模型。您可以根据具体的任务和需求对模型进行调整和修改。