在Keras中进行模型部署通常有两种方式:使用Keras自带的方法来保存和加载模型,或者将模型转换为TensorFlow的SavedModel格式进行部署。
- 使用Keras自带的方法保存和加载模型:
# 保存模型 model.save("my_model.h5") # 加载模型 from keras.models import load_model loaded_model = load_model("my_model.h5")
- 将模型转换为TensorFlow的SavedModel格式:
import tensorflow as tf # 转换为SavedModel格式 tf.saved_model.save(model, "saved_model") # 加载SavedModel格式的模型 loaded_model = tf.keras.models.load_model("saved_model")
无论使用哪种方式,部署模型时还需要考虑输入数据的预处理和模型推理的后处理。通常可以使用Flask等框架来搭建一个简单的API服务器,接收请求并调用模型进行推理。另外,也可以考虑使用TensorFlow Serving等服务来部署模型。